Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
G. Vasuki, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a* }}$ K. Ramamurthi, ${ }^{\text {a }}$ S. Dubey ${ }^{\text {b }}$ and D. P. Jindal ${ }^{\mathbf{b}} \boldsymbol{+}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan
University, Tiruchirappalli 620 024, India, and
${ }^{\text {b }}$ University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India

+ Deceased

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.108$
Data-to-parameter ratio $=8.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

16-(3-Pyridylmethylene)androst-4-ene-3,17-dione

In the title compound, $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{2}$, ring A adopts a slightly distorted half-chair conformation, while rings B and C are in chair conformations. The five-membered ring D adopts a $13 \beta, 14 \alpha$-half-chair conformation. The 3-pyridyl ring has an E configuration with respect to the carbonyl group at position 17. The crystal structure is stabilized by weak intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and van der Waals forces.

Comment

The X-ray investigation of the title compound, (I), was undertaken as a part of our study on the structure and conformation of new synthetic steroid derivatives (Hema et al., 2002; Vasuki et al., 2001; Vasuki, Parthasarathi, Ramamurthi, Dubey \& Jindal, 2002a,b; Vasuki, Parthasarathi, Ramamurthi, Jindal \& Dubey, 2002; Vasuki, Thamotharan et al., 2002a,b). We are particularly interested in studying the conformational flexibilities of steroids resulting from various substitutions at the C3, C16 and C17 positions, since it is well known that steroid receptors are able to modify the mode of binding at ring D to accommodate several different types of substitution at C17 (Duax \& Norton, 1975).

(I)

In (I), ring A has a slightly distorted half-chair conformation, with asymmetry parameters (Duax \& Norton, 1975) $\Delta C_{2}(\mathrm{C} 1-\mathrm{C} 2)=9.26^{\circ}$ and $\Delta C_{s}(\mathrm{C} 1)=13.83^{\circ}$, as observed in a similar androstene derivative (Galdecki et al., 1990). Rings B and C adopt chair conformations, while ring D adopts a $13 \beta, 14 \alpha$-half-chair conformation, with pseudo-rotational parameters $\Delta=1.2^{\circ}$ and $\varphi_{m}=41.5$ (3) (Altona et al., 1968). The geometry of the rings is trans at the B / C and C / D ring junctions. The $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 20-\mathrm{C} 21$ torsion angle of 172.5 (3) ${ }^{\circ}$ indicates that the 3-pyridyl ring has an E configuration with respect to the carbonyl group at position 17. The larger exocyclic angle $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 20\left[132.1(3)^{\circ}\right]$ compared with $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 20\left[119.2\right.$ (3) ${ }^{\circ}$] might be a consequence of steric repulsion between $\mathrm{H} 15 B$ and $\mathrm{H} 22(\mathrm{H} 15 B \cdots \mathrm{H} 22=$ $2.23 \AA$). The dihedral angle between the plane of the pyridine ring and the average molecular plane comprising rings A, B, C and D is $5.27(1)^{\circ}$. The values of the $\mathrm{C} 8-\mathrm{C} 14-\mathrm{C} 15$ [120.4 (2) ${ }^{\circ}$] and $\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17$ [100.6 (2) ${ }^{\circ}$] angles are close to the expected values of 119.3 and 99.2°, respectively (Duax

Received 11 October 2002 Accepted 1 November 2002 Online 15 November 2002
\& Norton, 1975). The pseudo-torsion angle C19$\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ is observed to be $6.3(3)^{\circ}$. The $\mathrm{C} 4-\mathrm{C} 5$ $\left(\mathrm{Csp}^{2}-\mathrm{Csp}{ }^{2}\right.$) distance of 1.343 (4) \AA confirms the localization of a double bond at this position (Vasuki, Parthasarathi, Ramamurthi, Jindal \& Dubey, 2002; Vasuki, Thamotharan et al., 2002a). A short intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact is observed between C 20 and O 17 , with an $\mathrm{H} 20 \cdots \mathrm{O} 17$ distance of $2.54 \AA$. An intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact is observed between C 26 and O^{i}, with an $\mathrm{H} 26 \cdots \mathrm{O} 3^{\mathrm{i}}$ distance of $2.53 \AA$ [symmetry code: (i) $x, y, z-1$]. The structure is stabilized by van der Waals interactions.

Experimental

The title compound was prepared by dissolving 17-oxo-16-(3pyridylmethylene) androst-5-en-3 β-ol ($1 \mathrm{~g}, 2.66 \mathrm{mmol}$) in dry toluene $(150 \mathrm{ml})$ under reflux, and then adding cyclohexanone $(10 \mathrm{ml})$ to it. Traces of moisture were removed by azeotropic distillation. The distillation was continued at a slow rate during dropwise addition of a solution of aluminium isopropoxide (1 g) in dry toluene (15 ml). The reaction mixture was refluxed for 4 h and left overnight at room temperature. The slurry was filtered and the residue washed thoroughly with dry toluene. The combined filtrate and washing were steam distilled until the organic solvent was completely removed. The solid residue was allowed to stand overnight and then filtered, washed, dried and crystallized from methanol to afford crystals of (I) (yield $0.6 \mathrm{~g}, 59.68 \%$, m.p. $475-481 \mathrm{~K}$).

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{2}$
$M_{r}=375.49$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=11.4545$ (12) \AA
$b=12.207$ (2) A
$c=14.784$ (3) \AA
$V=2067.2(6) \AA^{3}$
$Z=4$
$D_{x}=1.207 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo K α radiation
> Cell parameters from 25 \quad reflections
> $\theta=10-15^{\circ}$
> $\mu=0.08 \mathrm{~mm}^{-1}$
> $T=293(2) \mathrm{K}$
> Plate, white
> $0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.008$
\quad diffractometer	$\theta_{\max }=25.0^{\circ}$
$\omega-2 \theta$ scans	$h=-2 \rightarrow 13$
Absorption correction: ψ scan	$k=-5 \rightarrow 14$
$\quad($ North et al., 1968$)$	$l=-10 \rightarrow 17$
$T_{\min }=0.993, T_{\max }=1.000$	2 standard reflections
2222 measured reflections	frequency: 120 min
2172 independent reflections	intensity decay: none

1671 reflens with $I>2 \sigma(I)$
1671 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.108$
$S=1.12$
2172 reflections
253 parameters
H -atom parameters constrained

All H atoms were placed geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

H and $1.2 U_{\text {eq }}(\mathrm{C})$ for all others. The absolute configuration was assigned to correspond with that of the known chiral centres in the starting molecules, namely 17-oxo-16-(3-pyridylmethylene)androst-5-en- 3β-ol. Friedel pairs were not merged.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP97 (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

SD thanks CSIR, India, for financial assistance and Cipla Ltd, Mumbai, for providing the chemicals. GV thanks the UGC, India, for the award of an FIP fellowship (1999-2001).

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Galdecki, Z., Grochulski, P. \& Wawrzak, Z. (1990). J. Crystallogr. Spectrosc. Res. 20, 425-428.
Hema, R., Parthasarathi, V., Thamotharan, S., Dubey, S. \& Jindal, D. P. (2002). Acta Cryst. C58, o421-o422.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002a). Acta Cryst. E58, o355-o356.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002b). Acta Cryst. E58, o1224-o1226.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jindal, D. P. \& Dubey, S. (2001). Acta Cryst. C57, 1062-1063.
Vasuki, G., Parthasarathi, V., Ramamurthi, K., Jindal, D. P. \& Dubey, S. (2002). Acta Cryst. C58, o162-o163.
Vasuki, G., Thamotharan, S., Parthasarathi, V., Ramamurthi, K., Dubey, S. \& Jindal, D. P. (2002a). Acta Cryst. E58, o753-o755.
Vasuki, G., Thamotharan, S., Parthasarathi, V., Ramamurthi, K., Dubey, S \& Jindal, D. P. (2002b). Acta Cryst. C58, o598-o599.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

